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An interacting bosonic model of Kitaev type is proposed on the three-dimensional diamond lattice. Similarly
to the two-dimensional Kitaev model on the honeycomb lattice, which exhibits both Abelian and non-Abelian
phases, the model has two �“weak” and “strong” pairing� phases. In the weak pairing phase, the auxiliary
Majorana hopping problem is in a topological superconducting phase characterized by a nonzero winding
number introduced by Schnyder et al. �Phys. Rev. B 78, 195125 �2008�� for the ensemble of Hamiltonians
with both particle-hole and time-reversal symmetries. The topological character of the weak pairing phase is
protected by a discrete symmetry.

DOI: 10.1103/PhysRevB.79.075124 PACS number�s�: 75.10.Jm, 75.50.Mm, 73.43.�f

I. INTRODUCTION

The recent discovery of Z2 topological insulators, a band
insulator with particular topological characters of Bloch
wave functions, came as a surprise.1–9 On the one hand, Z2
topological insulators are close relatives to more familiar in-
teger quantum Hall �IQH� states.10,11 Similar to an IQH state
in the bulk, they are characterized by a topological invariant
�Z2 invariant�. Similar to an IQH state with boundaries, they
support stable gapless boundary states that are robust against
perturbations. On the other hand, unlike the IQH states, time-
reversal symmetry �TRS� is a prerequisite to the existence of
Z2 topological insulators. In fact, as soon as the TRS of a Z2
topological insulator is broken, it becomes possible to de-
form in a continuous manner a band insulator with a trivial
Z2 topological number into one with a nontrivial Z2 number.

Time-reversal symmetry for spin-1/2 particles is not the
only discrete symmetry for which a topological distinction of
quantum ground states arises. A systematic and exhaustive
classification of topological band insulators and mean-field
superconductors has been proposed in Ref. 14 by relying on
the discrete symmetries of relevance to the theory of random
matrices.12,13 In three spatial dimensions, it was shown that,
besides the Z2 topological insulator in the symplectic sym-
metry class, there are precisely four more symmetry classes
in which topological insulators and/or superconductors are
possible.15,16 For three out of the five symmetry classes of
random matrix theory, we introduced a topological invariant
� �winding number�, which distinguishes several different
topological insulators/superconductors, just like the Chern
integer distinguishes different IQH states in two
dimensions.10,11

While the classification given in Ref. 14 is for noninter-
acting fermionic systems, strong correlations among elec-
trons �or spins� might spontaneously give rise to these topo-
logical phases by forming a nontrivial band structure for
some, possibly emergent, fermionic excitations �e.g.,
spinons�.17 It is the purpose of this paper to demonstrate how
topological insulators �superconductors� emerge as a result
of strong correlations. We will show that it is possible to
design an interacting bosonic model with emergent Majorana
fermion excitations, the ground state of which is a topologi-
cal insulator �superconductor� with nonvanishing winding
number, ��0.

Our model is a natural generalization of the spin-1/2
model on the honeycomb lattice introduced by Kitaev18 to
the three-dimensional diamond lattice with four-dimensional
Hilbert space per site. The Kitaev model on the honeycomb
lattice has two types of phases: the so-called Abelian and
non-Abelian phases. The Abelian phase is equivalent to the
toric code model19 and an exactly solvable model proposed
by Wen,20 which in turn is described by a Z2 gauge theory.
On the other hand, the non-Abelian phase is in the univer-
sality class of the Moore-Read Pfaffian state. Each phase
corresponds to the weak and strong pairing phases of two-
dimensional spinless chiral p-wave superconductor,
respectively,21 the latter of which is an example of a topo-
logical superconductor in symmetry class D of Altland-
Zirnbauer classification in two dimensions.12–14

Similarly to the Kitaev model on the honeycomb lattice,
the ground state of our model can be obtained from a Majo-
rana fermionic ground state �with a suitable projection pro-
cedure�. Our model has two phases, which we also call
strong and weak pairing phases. In particular, in the weak
pairing phase, the ground state is given by a topological su-
perconducting state in symmetry class DIII of Altland-
Zirnbauer classification, and in the universality class of a
three-dimensional analog of the Moore-Read Pfaffian state
discussed in Ref. 14. The B phase of 3He is also in this
universality class.14,22,23 The topological character of the
ground state is protected by a discrete symmetry transforma-
tion, which is a combination of time-reversal and a fourfold
discrete rotation, the latter of which forms a subgroup of a
continuous U�1� symmetry of our model. Spin-1/2 models of
Kitaev type on the diamond lattice and on other three-
dimensional lattices have been constructed.24–26 For these
models, however, there is no phase analogous to the non-
Abelian phase in the original Kitaev model, and the ground
states discussed there have a vanishing winding number. Ex-
tensions of the spin-1/2 Kitaev model to models with four-
dimensional Hilbert space per site have been studied in Refs.
20 and 27–30.

II. LOCAL HILBERT SPACE AND DISCRETE
SYMMETRIES

We start by describing the local Hilbert space of our
model, defined as it is at each site of some lattice. Consider
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the four-dimensional Hilbert space spanned by the orthonor-
mal basis

����, � = � 1, � = � 1. �1�

This space can be viewed, if we wish, as describing the four-
dimensional Hilbert space of a spin-3/2 degree of freedom,
or as a direct product of two spin-1/2 Hilbert spaces. In the
latter case, one can view these two spin-1/2 degrees of free-
dom as, say, originating from spin and orbital. We will de-
note two sets of Pauli matrices, ��=�0 ,�x ,�y ,�z, and ��

=�0 ,�x ,�y ,�z ��=0,1 ,2 ,3�, each acting on � and � indices,
with �0 and �0 being 2�2 unit matrices.

We shall represent the Hamiltonian in terms of two sets of
Dirac matrices ��=0,1,2,3 �Dirac representation�,

�a = �a
� �x, �0 = �0

� �z = 	 = 
0, �2�

and ��=0,1,2,3 �chiral representation�,

�a = − �a
� �z, �0 = �0

� �x = 
5, �3�

where a=1,2 ,3. The two sets ���� and ���� are related to
each other by ��= i��i
5
0= i����0 � �y�, and satisfy the
Dirac algebra,

���,��� = ���,��� = 2���, �,� = 0, . . . ,3. �4�

Discrete symmetries

In the following, we will consider three antiunitary dis-
crete symmetry operations, T, T�, and . They are character-
ized by

T2 = + 1, 2 = − 1, T�4 = − 1. �5�

In the sequel, we will treat two distinct operations for time
reversal �TR�.

First, if the local Hilbert space is interpreted as describing
a spin-3/2 particle, the natural TR operation  is given by

=�e−i�Sy
3/2

K, where � stands for an arbitrary phase �will be
set to one henceforth�, Sy

3/2 is a four by four matrix represent-
ing the y component of spin with S=3 /2, and K implements
the complex conjugation, KiK−1=−i. If we take ���� to be
the basis that diagonalizes Sz �magnetic basis, �3 /2,m��, then

 = − i�y
� �xK . �6�

This is nothing but the charge-conjugation matrix C= i
2
0

for the gamma matrices in the Dirac representation. As  is
TRS for half-integer spin, 2=−1. Note also that

��−1 = − ��, ��−1 = + ��. �7�

Second, if the local Hilbert space is interpreted as describ-
ing two spin-1/2 degrees of freedom, we can consider a TR
operation T defined by

T = �i�y� � �i�y�K ,

T�aT−1 = − �a, T�aT−1 = − �a, �8�

with a=1,2 ,3. Note that T2= +1. Under T, � and � are trans-
formed as

T��T−1 = − ��, T��T−1 = − ��,

Ti
5
0T−1 = − i
5
0, �9�

where covariant and contravariant vectors are defined as
��= �	 ,�a� and ��= �	 ,−�a�.

As we will see later, while the � part of our Hamiltonian
is fully anisotropic in � space, the � part of the Hamiltonian
is invariant under a rotation around �y axis. In particular, it is
invariant under a rotation R by � /2 around �y axis,

R	�x

�y

�z 
R−1 = 	 �z

�y

− �x
, R = ��0 + i�y�/�2. �10�

Under R, � and � are transformed as

R��R−1 = − ��, R��R−1 = + ��,

Ri
5
0R−1 = + i
5
0. �11�

By combining T with R we can define yet another antiunitary
operation, T�=RT,

T� = RT = �i�y − �0�i�yK/�2,

T��aT�−1 = − �a, T�	�x

�y

�z 
T�−1 = 	− �z

− �y

+ �x 
 . �12�

Below, with a slight abuse of language, we will call this
operation T� TR operation. When applied to � and �,

T���T�−1 = + ��, T���T�−1 = − ��,

T�i
5
0T�−1 = − i
5
0, �13�

i.e., TRS T� exchanges � and �, and covariant and contra-
variant vectors. Notice that

T�2 = i�y, T�4 = − 1. �14�

III. HAMILTONIAN

In the two-dimensional Kitaev model, different types of
interactions �represented by three 2�2 Pauli matrices� are
assigned to three distinct types of bonds that are defined by
their different orientation in the honeycomb lattice. It is this
anisotropic nature of the interaction that makes the Kitaev
model exactly solvable. This construction can be extended to
the diamond lattice where there are four distinct types of
bonds with different orientation.

The diamond lattice is bipartite and consists of two inter-
penetrating fcc lattices shifted by a�−1,1 ,−1� /4 along the
body diagonal, where a is the lattice constant. We label sites
rA and rB on the two sublattices A and B of the diamond
lattice as

rA = �
i=1

3

miai, rB = rA + s0, mi � Z , �15�

where the primitive vectors ai are given by
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a1 =
a

2	1

1

0

, a2 =

a

2	0

1

1

, a3 =

a

2	1

0

1

 . �16�

We have also introduced the three-component vectors

s1 =
a

4	1

1

1

, s2 =

a

4	− 1

− 1

1

 ,

s3 =
a

4	 1

− 1

− 1

, s0 =

a

4	− 1

1

− 1

 , �17�

which connect the nearest-neighbor sites �Fig. 1�.
The Hamiltonian we study in this paper is defined by

H = − �
�=0

3

J� �
�−links

�� j
��k

� + � j
��k

�� . �18�

Here, the sites j and k are end points of a link of type �.
There are four types of links �=0,1 ,2 ,3 in the diamond
lattice since they can be distinguished by their orientations.
Hamiltonian �18� can also be written in terms of �� and ��

as

H = − �
�=0

3

J� �
�−links

� j
��k

��� j
x�k

x + � j
z�k

z� . �19�

This Hamiltonian is invariant under discrete symmetries, T,
R, T�, and , and enjoys a U�1� symmetry for rotation
around �y axis.

IV. MAJORANA FERMION REPRESENTATION

Let us consider the �local� Hilbert space in which we have
six Majorana fermions ��p�p=0,. . .,5 per site, which satisfy20,27

��p,�q� = 2�pq, p,q = 0, . . . ,5. �20�

To construct four-dimensional Hilbert space out of the eight-
dimensional Hilbert space, we introduce the fermion number
operator by

D ª i
p=0

5

�p, D2 = 1. �21�

The eigenvalue of D= �1 can then be used to select a four-
dimensional subspace of the full Hilbert space, which will be
called the physical subspace.

We can construct 15 generators of so�6� from the Majo-
rana fermions as

�pq = i�p�q, p � q . �22�

Within the physical subspace, �� can be expressed as

�� = ��4, � = 0,1,2,3. �23�

Since �45 anticommutes with ��, we make the identification

�45 = �1�2�3�0 = �0
� �y = i
5
0. �24�

The second set of the gamma matrices ���� is

�� = i���45 = ��5. �25�

The Majorana fermions naturally inherit the symmetry
operations on � and �. The symmetry conditions are auto-
matically satisfied if we define T, R, and T� operations on
Majorana fermions by

T��T−1 = ��, T�sT−1 = �s, s = 4,5,

R��R−1 = − ��, R��4

�5 �R−1 = isy��4

�5 � ,

T���T�−1 = − ��, T���4

�5 �T�−1 = isy��4

�5 � . �26�

Here, the definitions of the covariant ���� and contravariant
���� vectors follow from those of ������ and ������, and we
have introduced another set of Pauli matrices s�=0,1,2,3 acting
on �4,5 with s0 being 2�2 unit matrix. The discrete rotation
operator R can be written in terms of the Majorana fermions
� as ei��4�5/4.

V. SOLUTION THROUGH A MAJORANA HOPPING
PROBLEM

In terms of the Majorana fermions the Hamiltonian can be
written as

H = i�
�=0

3

J� �
�−links

ujk�� j
4�k

4 + � j
5�k

5� , �27�

where we have introduced a link operator by

ujk ª i� j
�jk�k

�jk, �28�

with � jk=0,1 ,2 ,3 ,4 depending on the orientation of the link
ending at sites j and k. Note that TR �T or T�� operation flips
the sign of a link operator,

TujkT
−1 = − ujk, RujkR

−1 = + ujk,

T�ujkT�−1 = − ujk. �29�

�This is also the case for TRS on the link operators in the
spin-1/2 honeycomb lattice Kitaev model.� When necessary,

FIG. 1. �Color online� The diamond lattice and the six Majorana
fermions �0,. . .,5. Sites on the sublattice A �B� are denoted by an
open �filled� circle.
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this sign flip can be removed by a subsequent gauge trans-
formation for Majorana fermions �4,5 on either one of sub-
lattices if the underlying lattice structure is bipartite �see be-
low�.

What is essential to observe is that all ujk appearing in the
Hamiltonian commute with each other and with the Hamil-
tonian. They can thus be replaced by their eigenvalues ujk
= �1, and the interacting Hamiltonian reduces to, for a fixed
configuration of the Z2 gauge field �ujk�, a simple hopping
model of Majorana fermions. Observe that both �4 and �5

Majorana fermions feel the same Z2 gauge field. The ground
state of the Hamiltonian can then be obtained by first picking
up the Z2 gauge-field configuration that gives the lowest
ground-state energy for the Majorana hopping problem, and
then projecting the resulting fermionic ground state onto the
physical Hilbert space. According to Lieb’s theorem,31 the Z2
gauge-field configuration that gives the lowest ground-state
energy has zero Z2 vortex for all hexagons, and hence we can
take ujk=1 for all links.

For notational convenience, for a Majorana fermion at the
jth site located at rA �rB� on the sublattice A �B�, we denote
arA

s
ª� j

s �brB

s
ª� j

s�. With periodic boundary condition and
with the Fourier transformation, arA

s =�ke
ik·rAak

s /���A� and
brB

s =�ke
ik·rBbk

s /���B�, where ��A,B� is the total number of
sites on the sublattice A ,B, respectively, the Majorana hop-
ping Hamiltonian in the momentum space is

HMH = �
s

�
k

�a−k
s , b−k

s �H�k��ak
s

bk
s � , �30�

where we have defined

H�k� ª � i��k�
− i���k�

�, ��k� ª �
�=0

3

J�eik·s�,

�31�

and noted a−k=ak
† when k�0. The energy spectrum E�k� is

given by E�k�= �����k��2, with twofold degenerate for each
k.

Symmetries and topology of the Majorana hopping
Hamiltonian

We have reduced the interacting bosonic model to the
Majorana hopping problem. This auxiliary Majorana hop-
ping Hamiltonian is, in the terminology of Altland and Zirn-
bauer, in symmetry class D,12,13 i.e., the ensemble of qua-
dratic Hamiltonians describing Majorana fermions. �See
Appendix.� In more general situations �which we will con-
sider below�, the auxiliary Majorana hopping Hamiltonian is
given by

HMH = �
k

�a−k
4 , a−k

5 , b−k
4 , b−k

5 �X�k�	
ak

4

ak
5

bk
4

bk
5

 , �32�

where X describes a Hamiltonian for Majorana fermions, and
satisfies

X†�k� = X�k�, XT�− k� = − X�k� . �33�

This is the defining property of symmetry class D. Below, to
describe the 4�4 structure of the single-particle Majorana
hopping Hamiltonian X�k�, we introduce yet another set of
Pauli matrices c�=0,1,2,3 acting on sublattice indices.

If our bosonic model further satisfies TRS T�, the Hamil-
tonian X for the auxiliary Majorana hopping problem re-
spects

cz�isy�XT�− k��− isy�cz = X�k� , �34�

where the factor cz can be thought of as a gauge transforma-
tion, adding a phase factor ei� for Majorana fermions on B
sublattice bs, and can be removed by a unitary transformation
bs→−bs. With this further condition arising from T�, the
relevant Altland-Zirnbauer symmetry class is class DIII. �See
Appendix.�

In Ref. 14, it has been shown that the space of all possible
quantum ground states in class DIII in three spatial dimen-
sions is partitioned into different topological sectors, each
labeled by an integer topological invariant �. To uncover this
topological structure and introduce the winding number, we
observe that all Hamiltonians in symmetry class DIII can be
brought into a block-off-diagonal form. For X, this is done
by a unitary transformation

U = U2U1, X → X̃ = U2U1XU1
†U2

†, �35�

where the first unitary transformation rotates sy→U1syU1
†

=−sz,

U1 = �s0 − isx�/�2, �36�

whereas the second unitary transformation exchanges second
and fourth entries,

U2 = �s0 + sz�c0/2 + �s0 − sz�cx/2. �37�

The combination of U1 and U2 diagonalizes sycz as

U2U1syczU1
†U2

† = − diag�1,1,− 1,− 1� . �38�

After the unitary transformation, we find

X̃�k� = � 0 D�k�
D†�k� 0

� . �39�

This block-off-diagonal structure is inherited to the spectral
projector P�k�, P2= P, which projects onto the space of filled
Bloch states at each k,

2P�k� − 1 = � 0 q�k�
q†�k� 0

�, q†q = 1. �40�

The integer topological invariant is then defined, from the
off-diagonal block of the projector, as14

��q� = �
BZ

d3k

24�2���� tr��q−1��q� · �q−1��q� · �q−1��q�� ,

�41�

where � ,� ,�=kx ,ky ,kz, and the integral extends over the
first Brillouin zone �BZ�.32 The nonzero value of the winding
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number signals a nontrivial topological structure, an observ-
able consequence of which is the appearance of gapless sur-
face Majorana fermion modes.

VI. STRONG PAIRING PHASE

When one of the coupling J� is strong enough compared
to the others, the spectrum for the Majorana fermions is
gapped. In this phase, the winding number � is zero. This
phase can be called “strong pairing phase,” following the
similar phase in the BCS pairing model. Because of the
trivial winding number, there is no surface stable fermion
mode in the auxiliary Majorana hopping Hamiltonian when
it is terminated by a surface. The properties of this phase can
be studied by, say, taking the limit J0�Ja=1,2,3�0 and then
developing a degenerate perturbation theory. In this limit of
isolated links, there are four degenerate ground states for
each link ending at the two sites �rA ,rB�= �rA ,rA+s0�,

1
�2

��↑�rA

� �↑�rB

� + �↓�rA

� �↓�rB

� ���rA
�rA

� ��rB
�rB

� , �42�

with �rA,B
= �1 where �¯ �r

�,� represents the state for �r and
�r, respectively. The effective Hamiltonian acting on these
degenerate ground states is defined on the cubic lattice since
each J0 link at �rA ,rA+s0� is connected to six neighboring
links at rA�ai, where ai=s0+si with i=1,2 ,3, up to the
fourth order in the degenerate perturbation theory. If we use
notations �A

�→�� and �B
�→��, the effective Hamiltonian up

to the fourth order in the degenerate perturbation theory is
�up to constant terms�

Heff =
5

64 �
�i,j,k�=�x,y,z�,
�y,z,x�,�z,x,y�

Ji
2Jj

2

J0
3 �

p

Fp, �43�

where p stands for a plaquette surrounded by r, r+ai, r+aj
and r+ai+aj, and

Fp = ��k�0�r�� j�i�r+ai
��i� j�r+aj

��0�k�r+ai+aj
. �44�

A similar model on the cubic lattice was discussed in Refs.
20, 27, and 28.

VII. WEAK PAIRING PHASE

When all J� are equal, J�=J, the energy spectrum of the
Majorana hopping Hamiltonian �Eq. �30�� has lines of zeros
�line nodes� in momentum space. This gapless nature is,
however, not stable against perturbations that respect TRS
T�. This can be illustrated by taking a four “spin” perturba-
tion in the gapless phase, defined on three sites j ,k , l, where
sites j and k are two different nearest neighbors of site l. Let
us take, as an example,

� j
0�i�0�1�l�k

1 = � j
0�l

2�l
3�k

1 = − � j
0�l

3�l
2�k

1 = � j
04�l

24�l
35�k

14

= iujl� j
4 � Dl � ulk�k

4, �45�

where we take the link emanating from sites j �k� and l to be
parallel to s0 �s1�. If perturbations of this type are small
enough, relative to the excitation energy of a Z2 vortex loop

�line�, i.e., an excitation which flips the sign of Z2 flux
threading hexagons, we can contain ourselves in the vortex-
free sector where ujk= +1. Thus, the above four spin pertur-
bation leads to next-nearest-neighbor hopping terms of the
Majorana fermions. To respect TRS T�, Eq. �45� can be
supplemented with its TRS partner, � j

0�l
3�l

2�k
1

=T�� j
0�l

3�l
2�k

1T�−1, leading to a perturbation

Hnnn
z = �

��jlk��
Kjlk

z �i� j
��l

��l
��k

� − �� ↔ ���

= i �
��jlk��

Kjlk
z ujlulk�� j

4�k
4 − � j

5�k
5� , �46�

where the summation extends over all sites labeled by l and
their nearest neighbors j and k, with the link emanating from
sites j �k� and l parallel to s� �s��, and Kjlk

z �R. Similarly, the
following perturbation defined on three sites j , l ,k is also
allowed by TRS T�,

Hnnn
x = �

��jlk��
Kjlk

x �� j
����i
5
0���l�k

� + �� ↔ ���

= i �
��jlk��

Kjlk
x ujlulk�� j

4�k
5 + � j

5�k
4� , �47�

with Kjlk
x �R. We choose Kjlk

x,z in such a way that these per-
turbations lead to the following next-nearest-neighbor terms
in the Majorana hopping Hamiltonian �see Fig. 2�

Hnnn
z =

Kz

2i
�

r

�r
Tsz�r+s1−s3

+ H.c.,

-1

0

1

-0.4 -0.2 0 0.2 0.4

ν

δJ1

-1

0

1

-0.4 -0.2 0 0.2 0.4

ν

Kz

(b)(a)

(c) (d)

FIG. 2. �Color online� �Top left� The choice of the second-
nearest-neighbor couplings Kjlk

x �blue links� and Kjlk
z �red links�.

�Top right� The phase diagram in terms of Kz and �J1 with J2,3,4

=J=2 and Kx=1. �Bottom� The numerical evaluation of the wind-
ing number as a function of the second-neighbor coupling Kz and
the distortion �J1. In the left panel, the winding number is com-
puted for Kz= �1 with changing �J1 continuously, whereas in the
right panel �J1 is fixed, �J1=1. For Kz=1 �Kz=−1�, �=1��=−1�
when �J1�0.
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Hnnn
x =

Kx

2i
�

r

�r
Tsx��r+s0−s2

+ �r+s2−s3
+ �r+s3−s0

� + H.c.,

�48�

where �T= ��4 ,�5� and Kx,z�R.
With these perturbations, the Majorana hopping Hamil-

tonian in momentum space is given by

X�k� = � �k� i��k�
− i���k� − �k�

� , �49�

where ��k� comes from nearest-neighbor hopping �27�,
whereas the off-diagonal part �k� comes from next-nearest-
neighbor hopping term �48� and is given by

�k� = x�k�sx + z�k�sz,

x�k� = Kx�sin
kx − ky

2
+ sin

ky − kz

2
+ sin

kz − kx

2
� ,

z�k� = Kz sin
ky + kz

2
. �50�

Observe that this Hamiltonian indeed satisfies class DIII con-
ditions �33� and �34�. It can then be made block-off diagonal
by the unitary transformation U, with the off-diagonal block
being given by

D�k� = − Im ��k�s0 + z�k�isx + x�k�isy + Re ��k�isz.

�51�

The energy spectrum at momentum k is given by E�k�
= �����k��2+ �x�k��2+ �z�k��2.

With these perturbations, we can indeed lift the degen-
eracy except at three points k=Qx,y,z in the BZ, where

Qx =
2�

a 	1

0

0

, Qy =

2�

a 	0

1

0

, Qz =

2�

a 	0

0

1

 . �52�

The dispersion around these points is Dirac type,

X�Qa + q� � Jqacy + Kx�qb − qc�sxcz +
Kz

2
�qy + qz�szcz,

�53�

where �a ,b ,c� is a cyclic permutation of �x ,y ,z�. These
three-dimensional Dirac fermions can be made massive by,
say, further adding a slight distortion in the nearest-neighbor
hopping, J1→J1+�J1. This gives rise to, at Qx,y,z, a pertur-
bation to X�k� which takes the form of a mass term to Dirac
fermions, −�J1cx.

For definiteness, we now set J�=2,3,4=J=2, Kx=1, J1=J
+�J1, and vary Kz and �J1. In the ��J1 ,Kz� plane, there are
phase boundaries represented by �J1=0 and the half-line
Kz=0 with �J1�0 �Fig. 2�. On the line �J1=0, the spectrum
is Dirac type except at the origin ��J1 ,Kz�= �0,0� where the
band gap closes at Qx,y,z quadratically in one direction in
momentum space �a similar gapless point is discussed in Ref.
30�. To determine the topological nature of the three gapped

phases, the first and second quadrants in ��J1 ,Kz� plane, and
the region �J1�0, we computed the winding number by nu-
merically integrating the formula �Eq. �41��. Integral �41�
quickly converges to a quantized value �=0, �1 as we in-
crease the number of mesh in momentum space. While the
winding number is identically zero when �J1�0, it takes
either �= +1 or �=−1 in the phases �J1�0, depending on
the sign of Kz. The complete structure of the phase diagram
including the value of the winding number is presented in
Fig. 2. In the phases with nonzero winding number, there
appears a gapless and stable surface Majorana fermion mode
when the Majorana hopping Hamiltonian is truncated by a
boundary, signaling nontrivial topological character in the
bulk.

VIII. DISCUSSIONS

We have constructed a three-dimensional interacting
bosonic model which exhibits a topological band structure
for emergent Majorana fermions. We thus take a first step to
explore topological superconductors arising from interac-
tions rather than giving some external parameters at the
single-particle level, such as external magnetic field or spin-
orbit coupling. Although the Kitaev model does not look
particularly realistic as it is anisotropic both in real and spin
spaces, it has played an important role in deepening our un-
derstanding of two-dimensional topological order. �See, for
example, Refs. 33–41.� Also, there has been a proposal to
realize the Kitaev model in terms of cold polar molecules on
optical lattices42,43 and superconducting quantum circuits.44

Interactions which are anisotropic both in real and internal
spaces can appear in systems with orbital degrees of free-
dom, such as the orbital compass model. Indeed, it is worth
emphasizing that our model, in the absence of four spin in-
teractions, possesses a U�1� rotation symmetry unlike the
original Kitaev model and its variants. Thus, identifying, say,
� as a spin-1/2 degree of freedom and � as an orbital degree
of freedom, it might be realized as a XY analog of the Kugel-
Khomskii model. Finally, while our model is designed to
have a Gutzwiller-type projected wave function as its exact
ground state, such ground-state wave functions can appear in
much wider context, which can be explored, e.g., in terms of
a variational approach with slave particle mean-field
theories.45
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APPENDIX: CLASS DIII SYMMETRY CLASS

In this appendix, we review the symmetry classification of
the Bogoliubov-de Gennes �BdG� Hamiltonians by Altland
and Zirnbauer, which is relevant to our auxiliary Majorana
hopping problems. We consider the following general form
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of a BdG Hamiltonian for the dynamics of fermionic quasi-
particles deep inside the superconducting state of a supercon-
ductor

H =
1

2
�c†, c �H� c

c† �, H = � � �

− �� − �T � , �A1�

where H is a 4N�4N matrix for a system with N orbitals
�lattice sites�, and c= �c↑ ,c↓� is a 2N component vector. �c
and c† can be either column or row vector depending on the
context.� Following the notations in Ref. 14, we use two sets
of 2�2 Pauli matrices t0,x,y,z and s0,x,y,z, which act on
particle-hole and spin indices, respectively. Because of

� = �† �hermiticity� ,

� = − �T �Fermi statistics� , �A2�

the BdG Hamiltonian �A1� satisfies particle-hole symmetry
�PHS�

�a�: H = − txHTtx, �PHS� . �A3�

The presence or absence of TRS and SU�2� spin rotation
symmetry are represented by

�b�: H = isyHT�− isy�, �TRS� , �A4�

and

�c�: �H,Ja� = 0, Ja ª �sa 0

0 − sa
T � ,

a = x,y,z, �SU�2� symmetry� , �A5�

respectively.
The ensemble of BdG Hamiltonian �A1� with PHS condi-

tion �a� defines symmetry class D of Altland and Zirnbauer.13

With additional TRS condition �b�, the resulting ensemble of
BdG Hamiltonians is called symmetry class DIII. For both
symmetry classes, spin rotation symmetry �c� is not neces-
sary.

The Hamiltonian in symmetry class D can be thought of
as, because of PHS �a�, a single-particle Hamiltonian of Ma-
jorana fermions. The Majorana structure of the BdG Hamil-
tonians can be revealed by

� c

c† � →
1
�2

��

�
� =

1
�2

� c + c†

i�c − c†�
� , �A6�

where � and � are Majorana fermions satisfying

�i� j + � j�i = 2�ij, �† = �, �i = 1, . . . ,2N�, etc.

�A7�

Then, in this Majorana basis, the BdG Hamiltonian can be
written as

H = �� , � �X��

�
� , �A8�

where

X =
1

2
� P + S − i�Q − R�

i�Q + R� P − S
� , �A9�

and

P = � − �T = − PT, Q = � + �T = + QT,

R = � + �� = − RT, S = � − �� = + ST. �A10�

Then, the 4N�4N matrix X satisfies

X† = X, XT = − X . �A11�

These conditions define symmetry class D. On the other
hand, symmetry class DIII is defined by, in addition,

isyXT�− isy� = X . �A12�

While it is always possible to cast the BdG Hamiltonians
into a form of a single-particle Hamiltonian of Majorana fer-
mions by rewriting the BdG Hamiltonian in terms of the
“real” and “imaginary” parts of the electron operator, � and
�, there is no natural way in general to rewrite Majorana
hopping problems as a BdG Hamiltonian. In order to do so,
the single-particle Majorana Hamiltonian must be an even-
dimensional matrix, and we need to specify a particular way
to make a complex fermion operator out of two Majorana
fermion operator. Still, any single-particle Hamiltonian for
Majorana fermions, with its defining properties �Eq. �A11��,
can be classified in terms of the presence �class DIII� or
absence �class D� of TRS �Eq. �A12�� without referring to
complex fermions.

1. Off-diagonal block structure of class DIII Hamiltonians

In combining class DIII conditions �a� and �b�, one can
see that a member of class DIII anticommutes with a unitary
matrix txsy,

H = − txsyHsytx. �A13�

In this sense, class DIII Hamiltonians can be said to have a
chiral structure. In order to compute the winding number �,
defined for class DIII Hamiltonians in three spatial dimen-
sions, it is necessary to go to a basis in which the chiral
transformation txsy is diagonal. We can find such a basis as
follows: we first rotate tx→ tz and sy→sz by a unitary trans-
formation

W1 =
1
�2

�t0 + ity�
1
�2

�s0 − isx� , �A14�

i.e., W1txW1
†=−tz and W1syW1

†=−sz. We then exchange the
third and fourth entries by a unitary transformation W2,

W2W1txsyW1
†W2

† = W2tzszW2
† = t0sz. �A15�

Further exchanging the second and third entries by a unitary
transformation W3, the combined unitary transformation W
=W3W2W1 diagonalizes txsy,

txsy → WtxsyW
† = tzs0. �A16�

Under the transformation W PHS and TRS transformations
are transformed as
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txs0 → Wtxs0WT = − itxsz, �PHS� ,

t0sy → Wt0syW
T = tysz, �TRS� , �A17�

respectively. Observe the transformed PHS and TRS pick up
the same sign under matrix transposition ��txsz�T= + �txsz�T

and �tysz�T=−�tysz�, respectively� as the original ones
��txs0�T= + �txs0� and �t0sy�T=−�t0sy�T, respectively�. In this
basis, the Hamiltonian takes the block-off-diagonal form,

H → � 0 D

D† 0
�, D = − szD

Tsz. �A18�

This can be further simplified by a unitary transformation

H → � 0 sxy
†

sxy 0
�� 0 D

D† 0
�� 0 sxy

†

sxy 0
� = � 0 sxy

† D†sxy
†

sxyDsxy 0
� ,

�A19�

where

sz = − isxy
T sxy, sxy

T =
1
�2

�sx − sy� . �A20�

Introducing

D� ª sxyDsxy = − sxy
T DTsxy

T = − �D��T, �A21�

we finally arrive at

H → � 0 D�

D�† 0
�, D� = − D�T. �A22�
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